
Lesson: Introduction to 
Neural Network in R 

 
 
Introduction 
 
Neural network is a powerful model inspired by how the brain works. It can perform regression 
tasks as well as classification tasks. A multilayer neural network contains one input layer, one or 
more hidden layers and one output layer. Compared to Linear Regression model, neural networks 
can learn nonlinearity relationship of independent variables from training data. Neural network 
models have nice theoretical properties and been applied to many real-world problems such as 
autonomous driving. 
 
Fig.1 below shows the structure of a simple neural network with one hidden layer. This model has 
an input layer with 3 input nodes, a hidden layer with 4 hidden nodes and an output layer with a 
result node. These nodes are interconnected by weights (links between nodes of different layers). 
These weights will form a weight matrix learned from training data. There is a bias node (dotted 
circle) linked to each node other than input nodes and hidden nodes.  
 

 
Figure 1. basic structure of neural network 

 
Fig.2 illustrates how a single neural node computes the output. Let’s take a hidden node as an 
example. The input value of hidden node (nodej) is the weighted sum of all input nodes plus the bias 
node (1), which can be represented as 

 
, where the subscript i denotes nodes of the input layer (previous layer), j denotes the hidden node, 
wji denotes the input-to-hidden weights of hidden node j. Each hidden node produces an output 



value aj from its input value using a non-linear activation function, which might be a sigmoid 
function or ReLU function. 

 
The output of the node in output layer (the predicted value) is also the weighted sum of all hidden 
nodes in the previous layer plus the bias node (1). 
 

 
Figure 2. non-linear transformation of a hidden neural node  

 
Gradient descent algorithms like Backpropagation are popular methods for training the weight 
matrix for multilayer neural networks. 
 
In this lesson, we will learn how to use a neural network in R for regression purpose and to predict 
some information from a dataset.  

Using a neural network model in a study can be decomposed into several steps : 
- Find a tool to explore the dataset and to use the neural network model 
- Clean the dataset and keep only the useful data 
- Normalize each column in the dataset which contains the values of a certain independent or 
dependent variable 
- Sample the dataset, divide it into training set and test set 
- Train the weight matrix of neural network model using training data 
- Correct the model if necessary 
- Run the neural network model to predict the value of dependent variable in test data 
- Denormalize the predicted value and compare it to the ground-truth value 
- Make some conclusion on the model and its performance 
 
 
In this example, we are going to use the following dataset: 
 



 
This dataset is composed of 7 variables: Diet, body masses (BOW), brain masses (BRW) and 
volumes of three brain regions (main olfactory bulb MOB, hippocampus HIP, auditory nuclei AUD) 
for 29 bats. In this example, we are trying to predict the value of BRW using the value of BOW, 
MOB, HIP and AUD as inputs. 

Step 1: Load the dataset 
 
First you have to install RStudio and then import the dataset. 
 
 



This will copy the dataset in a data frame variable called “Tabbats”. The same effect can be 
obtained by running the command (shown in terminal window): 
Tabbats <- read.table("Tabbats.txt", header = TRUE,       
                      stringsAsFactors = FALSE)  
 

Step 2: Clean the dataset 
 
In this step, you have to remove the data not useful for a regression neural network model with the 
following command: 
 
str(Tabbats) 
Tabbats <- Tabbats[,(4:8)] 
str(TabBats) 
 
We removed 3 attributes: 
    • The ID because it’s irrelevant; 
    • Species because they are character values 
    • Diet, because they are all phytophagy(1). 
To do that we use the following command: Tabbats <- Tabbats[,(4:8)] which removes the first 3 
columns from data frame Tabbats. 
 
The result is a new table Tabbats without the columns 1 to 3 of the original table. We are left with 5 
variables: BOW, BRW, AUD. MOB and HIP. 
 

Step 3: Normalize the data 
 
When training a neural network, one of the techniques that will speed up the training process is to 
normalize the inputs. If the input variables (features) come from very different scales, maybe some 
variables are from 0 to 1, some from 1 to 1,000, the gradient descent algorithm might need a lot of 
steps to oscillate back and forth before it converges when we run it on the cost function of neural 
network model. 
 
So we need to normalize the training and test data. This time we use the min-max normalization 
solution. We extract the maximum and minimum value from each column (variable) of table 
Tabbats, and use them to scale the variable values to the range [0, 1]. The following commands 
need to be executed: 
 



maxs <- apply(Tabbats, 2, max) 
mins <- apply(Tabbats, 2, min) 
scaled <- as.data.frame(scale(Tabbats, center = mins, scale = maxs - mins)) 
 
The data set now becomes as follows: 
            BOW          BRW             AUD            MOB            HIP 
1  1.267536e-01 0.1989320609 0.30427954 0.41682188 0.346510074 
2  1.105363e-01 0.2148375369 0.32626620 0.42541483 0.454183774 
3  4.954731e-02 0.1125880482 0.13152729 0.25270911 0.256532671 
4  3.920008e-02 0.0983106112 0.10365135 0.24538605 0.249212260 
5  1.742115e-01 0.3077709611 0.19473891 0.87254487 0.688118654 
6  1.691374e-03 0.0107930016 0.06321162 0.02074162 0.056971896 
…… 
 

Step 4: Divide the data set into training and test data 
 
You can shuffle the whole data set using sample() function. We extract 80% of the data as training 
data, and leave the remaining as test data. The following commands need to be executed: 
 
indarr <- sample(1:nrow(scaled),round(0.8*nrow(scaled)))  
train <- scaled[indarr,]  
test <- scaled[-indarr,] 
 

Step 5: Train the neural network model 
 
At first, we create a neural network model with just one hidden layer, and this layer has ten hidden 
nodes. We use four independent variables BOW, AUD. MOB and HIP to constitute the input layer 
of neural network, and the node in output layer produces the value of dependent variable BRW.  
 
We use training data to train the model and you need to notice that the parameter linear.output 
should be set to ‘T’ so that the model performs a regression task other than a classification task. 
 
The following commands need to be executed: 
install.packages("neuralnet") 
library(neuralnet) 
f <- as.formula(BRW~BOW+AUD+MOB+HIP) 
nn <- neuralnet(f,data=train,hidden=c(10),linear.output=T)  
#train NN with normalized training data 
 
Then we can use plot(nn) to illustrate the neural network structure we create: 
plot(nn) 
 



 
 
To check the trained weight matrix of the neural network model, we can use the following 
command: 
 
print(nn$result.matrix) 
 
It will show the training error, total number of training steps and weights learned through training 
process: 
                                         [,1] 
error                           0.004328590 
reached.threshold       0.007786513 
steps                           46.000000000 
Intercept.to.1layhid1  -0.966326161 
BOW.to.1layhid1         0.109112501 
AUD.to.1layhid1         1.465561442 
MOB.to.1layhid1        -1.758688346 
HIP.to.1layhid1        -1.364149755 
Intercept.to.1layhid2   0.388015818 
BOW.to.1layhid2         0.297679272 
AUD.to.1layhid2         1.592182508 
MOB.to.1layhid2        -0.167911954 
HIP.to.1layhid2        -0.281130733 
…… 
Intercept.to.1layhid10  0.960158512 
BOW.to.1layhid10        0.681061421 
AUD.to.1layhid10       -0.934404588 
MOB.to.1layhid10        1.529719985 
HIP.to.1layhid10        0.620069556 
Intercept.to.BRW        0.776807052 
1layhid1.to.BRW        -0.707508387 
1layhid2.to.BRW        -0.949095913 
1layhid3.to.BRW        -0.662794336 
1layhid4.to.BRW        -1.911382964 
1layhid5.to.BRW         0.875435148 
1layhid6.to.BRW         0.483427145 
1layhid7.to.BRW        -0.535594401 



1layhid8.to.BRW        -0.999112625 
1layhid9.to.BRW         1.072337799 
1layhid10.to.BRW        0.480026323 
 

Step 6: Correct the model if necessary 
 
We can adjust the number of hidden layers and hidden nodes in the neural network model to further 
improve its prediction performance. This time we add two hidden layers in the above model using 
the following command, and the new structure is illustrated in the diagram below. 
 
nn <- neuralnet(f,data=train,hidden=c(10,5,5),linear.output=T)  
 

 
 
The training error could be reduced to 0.001 or less. 

Step 7: Predict the value of dependent variable in test data 
 
With the trained neural network, we can input the values of independent variables of records in test 
data and run the NN model to produce the predicted value of dependent variable. The following 
command needs to be executed: 
 
predicted <- compute(nn,test) 
 
Note that the predicted BRW values are still in their normalized form. 

Step 8: Denormalize the result and compare it to the ground-truth value 
 
We can use the reverse procedure of data normalization to restore the predicted BRW values and 
their corresponding ground truth values. The following commands need to be executed: 
 



predicted_t <- predicted$net.result*(max(Tabbats$BRW)-
min(Tabbats$BRW))+min(Tabbats$BRW)  #result denormalizaiton 
test_gt <- test$BRW*(max(Tabbats$BRW)-min(Tabbats$BRW))+min(Tabbats$BRW) 
#ground truth value 
print(paste(test_gt, predicted_t)) 
 
Similar comparison results would be showed in the console: 
 
[1] "3028 3442.89066339023" "610 617.37974958612"   "393 400.682269239281"  
[4] "1003 941.446060097756" "2587 2371.70002430478" "814 715.735029481705" 

Step 9: Discuss the model’s performance 
You can find that the model’s test error is higher than training error, that is called the overfitting 
problem. We can adjust the NN model structure (decrease the number of hidden layers and hidden 
nodes) or increase the number of training samples to reduce the test error.  

Exercise 
Repeat the analysis, adjust the data normalization method, train-test data ratio and the structure of 
NN model. 


